Fast Food Restaurant Taxes, Soda Taxes, and Weight Outcomes among U.S. Adults

Lisa Nicholson, Jamie Chriqui, & Lisa Powell
Institute for Health Research and Policy
Health Policy Center
Background: Soda

• Link between state-level Soda Taxes and BMI
 – Weak among adults (Fletcher, Frisvold, and Tefft 2009)
 – NOT significant among adolescents (Powell, Chriqui, & Chaloupka 2009)

• No research examining state-level restaurant taxes and weight outcomes
Background: Restaurant

• Increase in the consumption of foods away from home (FAFH), food at full-service and fast food restaurants.

• Over 45% of household food budgets and over 6% of total household budgets are spent on FAFH (McGranahan 2008).

• Link between number of fast-food and full-service restaurants and adult obesity (Chou, Grossman, & Saffer 2004).
Purpose

To assess the potential of fast food restaurant and soda taxes as potential policy instruments to address the obesity epidemic among U.S. adults.
Definitions: Soda Tax

• Depending on the state definitions, taxes on sodas and other beverages are based on either the general sales tax or the food sales tax.

• General sales tax applies when “food” is defined to explicitly exclude items of interest.
 • E.g., KY Rev Stat Ann 139.485: “Food and food ingredients” are not taxable items; however, “food and food ingredients” shall not include...soft drinks.
 • In this example, food generally is not taxed but soft drinks are taxed at a rate of 6% (same as state sales tax).
2008 Soda Taxes in the U.S.

Pale yellow = 0%
Yellow = 1-3%
Orange = 4-5%
Red = 6-7%
Definitions: Restaurant Tax

• Taxes on restaurants and prepared food bought for home consumption (or on-premises consumption) apply based on the general state sales tax rates and not based on the food tax rates.
 • And, thus, these taxes are higher than tax rates applied to food items generally.

• Restaurant taxes do not differ based on full-service, fast food, carryout or drive-through/quick service.

• 47 states tax restaurant/prepared food sales based on primary legal research conducted by the Bridging the Gap Program.
Definitions: Restaurant Tax Cont.

• 14* states specifically mention restaurants in their definition of taxable items
 • *For example, AZ Rev. Stat. specifically defines restaurants as a type of establishment subject to transaction privilege taxes based on proceeds from gross receipts*

• 34* states specifically mention prepared food or food purchased away from home in their definition of taxable items
 • *For example, ME Rev Stat Ann tit. 36 & 1752: “Prepared food means...(c) all food and drinks sold from an establishment whose sales of food and drinks that are prepared by the retailer account for more than 75% of the establishment’s gross receipts”*

• 2* states and DC specifically tax restaurant sales
 • *For example, D.C. CODE ANN. 47-2001(g-1): “Food or drink for immediate consumption includes...all food or drink, served by, or sold in or by, restaurants....”*

Data are not mutually exclusive
2008 Restaurant Taxes in the U.S.

- Pale yellow = 0%
- Yellow = 1-4%
- Orange = 5-7%
- Red = 8-10%

bridging the gap
Data

• (BRFSS) Behavioral Risk Factor Surveillance System
 – Nationally representative sample of adults
 – Pooled cross-sections 1997-2008
 – Body mass index (BMI) and obesity (BMI≥30)

• State Tax Data
 – Our own data file containing specific tax amount for each state for each year
 – Fast food restaurant and soda taxes
Sample

- Final N=1,948,833

- Exclusion Criteria:
 - Currently pregnant
 - Younger than 20 years of age
 - Older than 64 years of age
 - Missing on height weight or control variables
Analysis

• **Models**
 – Logistic for probability of obese
 – OLS for BMI

• weighted using the BRFSS sampling weights

• State level clustering

• **Unobserved trends**
 – year fixed effects
 – state median household income control

• **Additional Controls**
 – individual demographics and ses, state cigarette tax
<table>
<thead>
<tr>
<th></th>
<th>Obese/Logistic Regression OR (95% CI)</th>
<th>BMI/OLS Regression b (s.e.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Females</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No tax (0%) - reference</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>Low tax (>0 % - <4%)</td>
<td>1.07 (0.95 – 1.19)</td>
<td>0.14 (0.16)</td>
</tr>
<tr>
<td>Middle tax (>4% - <6%)</td>
<td>1.01 (0.88 – 1.17)</td>
<td>0.04 (0.19)</td>
</tr>
<tr>
<td>High tax (≥6%)</td>
<td>1.03 (0.91 – 1.17)</td>
<td>0.09 (0.18)</td>
</tr>
<tr>
<td>Males</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No tax (0%) - reference</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>Low tax (>0 % - <4%)</td>
<td>1.05 (0.95 – 1.17)</td>
<td>0.15 (0.11)</td>
</tr>
<tr>
<td>Middle tax (>4% - <6%)</td>
<td>1.01 (0.91 – 1.12)</td>
<td>0.08 (0.12)</td>
</tr>
<tr>
<td>High tax (≥6%)</td>
<td>1.04 (0.95 – 1.15)</td>
<td>0.11 (0.11)</td>
</tr>
</tbody>
</table>

** p<.05
Results: Fast Food Restaurant

<table>
<thead>
<tr>
<th></th>
<th>Obese/Logistic Regression OR (95% CI)</th>
<th>BMI/OLS Regression b (s.e.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Females</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No tax (0%) – reference</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Some tax (>0 - <8%)</td>
<td>0.96 (0.83 – 1.10)</td>
<td>-0.15 (0.20)</td>
</tr>
<tr>
<td>High tax (≥ 8%)</td>
<td>0.83 (0.70 – 0.98)</td>
<td>-0.55 (0.27)</td>
</tr>
<tr>
<td>Males</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No tax (0%) – reference</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Some tax (>0 - <8%)</td>
<td>1.06 (0.96 – 1.17)</td>
<td>0.17 (0.12)</td>
</tr>
<tr>
<td>High tax (≥ 8%)</td>
<td>0.93 (0.72 – 1.19)</td>
<td>-0.15 (0.33)</td>
</tr>
</tbody>
</table>

p<.05
Results: Fast Food Restaurant

<table>
<thead>
<tr>
<th></th>
<th>Obese/Logistic Regression OR (95% CI)</th>
<th>BMI/OLS Regression b (s.e.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Females</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No tax (0%) – reference</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>Some tax (>0 - <8%)</td>
<td>0.96 (0.83 – 1.10)</td>
<td>-0.15 (0.20)</td>
</tr>
<tr>
<td>High tax (≥ 8%)</td>
<td>0.83*(0.70 – 0.98)*</td>
<td>-0.55*(0.27)*</td>
</tr>
<tr>
<td></td>
<td>[0.001 (0.005)]</td>
<td>[-0.0002 (0.00009)]</td>
</tr>
<tr>
<td>Males</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No tax (0%) – reference</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>Some tax (>0 - <8%)</td>
<td>1.06 (0.96 – 1.17)</td>
<td>0.17 (0.12)</td>
</tr>
<tr>
<td>High tax (≥ 8%)</td>
<td>0.93 (0.72 – 1.19)</td>
<td>-0.15 (0.33)</td>
</tr>
</tbody>
</table>

** * p<.05
Limitations

- only examine state-level taxes, not including county or local taxes
- Models do not include information about consumption
- stability of the elasticity
 - Reduced by % of population with significant effect
 - Restaurant taxes are somewhat stable across time
Conclusions

• Current tax rates are too small to generate substantial changes in consumption or weight outcomes

• Restaurant-specific taxes hold more potential than soda

• Restaurants may be a good point of intervention for the obesity epidemic